ゲスト さん (ログイン)
オンライン書店【ホンヤクラブ】はお好きな本屋での受け取りで送料無料!新刊予約・通販も。本(書籍)、雑誌、漫画(コミック)など在庫も充実
講談社 富谷昭夫
点
道具として使いこなす!膨大な観測データから普遍的な法則を抽出する手法とは?高校数学レベルから始まり、Python入門、TensorFlowによる実装、最新の論文まで踏み込む入門書。
データとサイエンス行列と線形変換確率論と機械学習ニューラルネットワークトレーニングとデータPython入門TensorFlowによる実装最適化、正則化、深層化畳み込みニューラルネットワークイジング模型の統計力学Nature Physicsの論文を再現しよう
【道具として使いこなす!】膨大な観測データから普遍的な法則を抽出する手法とは? 高校数学レベルから始まり、Python入門、TensorFlowによる実装、最新の論文まで踏み込む入門書。【著者サポートページ】https://github.com/akio-tomiya/intro_ml_in_physics【目次】第1章 データとサイエンス1.1 物理学とデータサイエンス/1.2 最小2乗法とオーバーフィット/1.3 テイラー展開と振り子の等時性/コラム:武谷の三段階論第2章 行列と線形変換2.1 ベクトル、行列と線形変換/2.2 変換としての行列/2.3 行列に関する色々/コラム:計算量のオーダー第3章 確率論と機械学習3.1 確率の基礎事項/3.2 教師あり学習と教師なし学習、強化学習/3.3 確率変数と経験的確率、大数の法則/3.4 大数の弱法則の証明/3.5 カルバックライブラーダイバージェンス/3.6 尤度と赤池情報量基準、汎化/3.7 ロジスティック回帰第4章 ニューラルネットワーク4.1 ニューラルネットワークの概論/4.2 万能近似定理/コラム:新しい道具と新理論第5章 トレーニングとデータ5.1 ニューラルネットワークの入出力と学習/5.2 誤差関数と汎化、過学習/5.3 誤差関数の最適化・学習/コラム:次元の呪い第6章 Python入門6.1 Pythonによるプログラミング入門/6.2 Pythonと他言語の比較/6.3 NumPyとMatplotlib/6.4 Pythonでのクラス第7章 TensorFlowによる実装7.1 TensorFlow/Kerasとは/7.2 データやライブラリのロード/7.3 データの分割とニューラルネットワークの設計/7.4 学習/7.5 結果の評価/コラム:量子化という用語第8章 最適化、正則化、深層化8.1 最適化法の改良/8.2 過学習を防ぐ/8.3 多層化にむけて第9章 畳み込みニューラルネットワーク9.1 フィルター/9.2 畳み込みニューラルネット/コラム:知能と飛行機第10章 イジング模型の統計力学10.1 イジング模型/10.2 イジング模型のモンテカルロ法/10.3 熱浴法のPythonコードとデータの準備/コラム:統計力学と場の量子論第11章 Nature Physicsの論文を再現しよう11.1 論文について/11.2 データの前処理/11.3 実験
この商品をご覧のお客様は、こんな商品もチェックしています。
行方昭夫
価格:990円(本体900円+税)
【2005年04月発売】
ページ上部へ戻る
この商品に寄せられたカスタマーレビューはまだありません。
レビューを評価するにはログインが必要です。
この商品に対するあなたのレビューを投稿することができます。
本好きのためのオンライン書店
Honya Club.comは日本出版販売株式会社が運営しているインターネット書店です。ご利用ガイドはこちら
1位
又吉直樹
価格:1,320円(本体1,200円+税)
【2015年03月発売】
一覧を見る
[BOOKデータベースより]
道具として使いこなす!膨大な観測データから普遍的な法則を抽出する手法とは?高校数学レベルから始まり、Python入門、TensorFlowによる実装、最新の論文まで踏み込む入門書。
データとサイエンス
[日販商品データベースより]行列と線形変換
確率論と機械学習
ニューラルネットワーク
トレーニングとデータ
Python入門
TensorFlowによる実装
最適化、正則化、深層化
畳み込みニューラルネットワーク
イジング模型の統計力学
Nature Physicsの論文を再現しよう
【道具として使いこなす!】
膨大な観測データから普遍的な法則を抽出する手法とは? 高校数学レベルから始まり、Python入門、TensorFlowによる実装、最新の論文まで踏み込む入門書。
【著者サポートページ】
https://github.com/akio-tomiya/intro_ml_in_physics
【目次】
第1章 データとサイエンス
1.1 物理学とデータサイエンス/1.2 最小2乗法とオーバーフィット/1.3 テイラー展開と振り子の等時性/コラム:武谷の三段階論
第2章 行列と線形変換
2.1 ベクトル、行列と線形変換/2.2 変換としての行列/2.3 行列に関する色々/コラム:計算量のオーダー
第3章 確率論と機械学習
3.1 確率の基礎事項/3.2 教師あり学習と教師なし学習、強化学習/3.3 確率変数と経験的確率、大数の法則/3.4 大数の弱法則の証明/3.5 カルバックライブラーダイバージェンス/3.6 尤度と赤池情報量基準、汎化/3.7 ロジスティック回帰
第4章 ニューラルネットワーク
4.1 ニューラルネットワークの概論/4.2 万能近似定理/コラム:新しい道具と新理論
第5章 トレーニングとデータ
5.1 ニューラルネットワークの入出力と学習/5.2 誤差関数と汎化、過学習/5.3 誤差関数の最適化・学習/コラム:次元の呪い
第6章 Python入門
6.1 Pythonによるプログラミング入門/6.2 Pythonと他言語の比較/6.3 NumPyとMatplotlib/6.4 Pythonでのクラス
第7章 TensorFlowによる実装
7.1 TensorFlow/Kerasとは/7.2 データやライブラリのロード/7.3 データの分割とニューラルネットワークの設計/7.4 学習/7.5 結果の評価/コラム:量子化という用語
第8章 最適化、正則化、深層化
8.1 最適化法の改良/8.2 過学習を防ぐ/8.3 多層化にむけて
第9章 畳み込みニューラルネットワーク
9.1 フィルター/9.2 畳み込みニューラルネット/コラム:知能と飛行機
第10章 イジング模型の統計力学
10.1 イジング模型/10.2 イジング模型のモンテカルロ法/10.3 熱浴法のPythonコードとデータの準備/コラム:統計力学と場の量子論
第11章 Nature Physicsの論文を再現しよう
11.1 論文について/11.2 データの前処理/11.3 実験