- 爆速Python
 - 
                                
                                
                                
- 価格
 - 3,960円(本体3,600円+税)
 - 発行年月
 - 2024年06月
 - 判型
 - B5
 - ISBN
 - 9784798183732
 
 
この商品をご覧のお客様は、こんな商品もチェックしています。
- Exercise Go プログラマ脳を鍛える至高の問題集
 - 
										
										
価格:2,728円(本体2,480円+税)
【2025年10月発売】
 
- Exercise Python プログラマ脳を鍛える至高の問題集
 - 
										
										
価格:2,508円(本体2,280円+税)
【2025年10月発売】
 
- なっとく!並行処理プログラミング
 - 
										
										
価格:3,520円(本体3,200円+税)
【2024年11月発売】
 
- Pythonによるディープラーニング
 - 
										
										
価格:4,378円(本体3,980円+税)
【2022年03月発売】
 
- グランドマスター三冠のKaggleノートブック開発術
 - 
										
										
価格:3,960円(本体3,600円+税)
【2025年02月発売】
 


























[BOOKデータベースより]
本書の目的は、Pythonエコシステムでより効率的なアプリケーションを記述する手助けをすることにあります。より効率的とは、コードが使うCPUサイクル、ストレージ領域、ネットワーク通信が少なくなることを意味します。本書では、パフォーマンスの問題に総合的なアプローチでのぞみます。ピュアPythonでのコード最適化テクニックについて説明するだけではなく、NumPyやpandasなど広く使われているデータライブラリの効率的な使い方についても検討します。Pythonでは十分なパフォーマンスが得られないケースがあるため、スピードがさらに求められる場合はCythonについても検討します。この総合的なアプローチの一環として、コードの設計にハードウェアが与える影響にも目を向け、現代のコンピュータアーキテクチャがアルゴリズムのパフォーマンスにおよぼす影響を分析します。また、ネットワークアーキテクチャが効率におよぼす影響と、高速なデータ分析でのGPUコンピューティングの使い方も調べます。
1 基礎的なアプローチ(データ処理の効率化が急がれている;組み込み機能のパフォーマンスを最大限に引き出す;並行性、並列性、非同期処理;ハイパフォーマンスなNumPy)
[日販商品データベースより]2 ハードウェア(Cythonを使って重要なコードを再実装する;メモリ階層、ストレージ、ネットワーク)
3 現代のデータ処理のためのアプリケーションとライブラリ(ハイパフォーマンスなpandasとApache Arrow;ビッグデータの格納)
4 高度なトピック(GPUコンピューティングを使ったデータ分析;Daskを使ったビッグデータの分析)
付録A 環境のセットアップ
付録B Numbaを使って効率的な低レベルコードを生成する
「そう、すべては速さのために」
Pythonでデータセットを扱う際、最後に重要になってくるのはやはり「処理速度」です。データが巨大であればあるほど、ちょっとした工夫が処理速度を向上させ、「データの氾濫」ともいえる現状を打開する鍵になってくれます。
Pythonの特性を理解しつつそのパフォーマンスを最大限に引き出し、さらにハイパフォーマンスなライブラリを正しく利用することができれば、遅い遅いといわれがちなPythonにおいても、爆速な処理を手にすることができるのです。
本書は、組み込み機能やスレッディング特性、CPythonのグローバルインタプリタロック(GIL)などに始まり、Cythonへの移行やGPUの利用に至るまでの多面的なアプローチを紹介し、単にマシン性能を上げたり、マシンの数を増やすだけでは得られない、効率的なPythonアプリケーションの記述をサポートします。
【本書は『Fast Python: High performance techniques for large datasets』の邦訳書です。】
◆◆◆◆◆もくじ◆◆◆◆◆
●Part 1 基礎的なアプローチ
・Chapter 1 データ処理の効率化が急がれている
・Chapter 2 組み込み機能のパフォーマンスを最大限に引き出す
・Chapter 3 並行性、並列性、非同期処理
・Chapter 4 ハイパフォーマンスなNumPy
●Part 2 ハードウェア
・Chapter 5 Cythonを使って重要なコードを再実装する
・Chapter 6 メモリ階層、ストレージ、ネットワーク
●Part 3 現代のデータ処理のためのアプリケーションとライブラリ
・Chapter 7 ハイパフォーマンスなpandasとApache Arrow
・Chapter 8 ビッグデータの格納
●Part 4 高度なトピック
・Chapter 9 GPUコンピューティングを使ったデータ分析
・Chapter 10 Daskを使ったビッグデータの分析
・付録A 環境のセットアップ
・付録B Numbaを使って効率的な低レベルコードを生成する